Coupling of D₁ and D₅ Dopamine Receptors to Multiple G Proteins

Implications for Understanding the Diversity in Receptor-G Protein Coupling

Anita Sidhu

Laboratory of Molecular Neurochemistry, Department of Pediatrics, Georgetown University Medical Center, Georgetown University, 3900 Reservoir Road NW, Washington, DC 20007

Abstract

Dopamine receptors are a subclass of the super family of G protein-coupled receptors, that transduce their effects by coupling to specific G proteins. Within the dopamine receptor family, the adenylyl cyclase stimulatory receptors include the D_1 and D_5 subtypes. The D_1 and D_5 dopamine receptors are genetically distinct, sharing >80% sequence homology within the highly conserved seven transmembrane spanning domains, but displaying only 50% overall homology at the amino acid level. When expressed in transfected GH₄C₁ rat pituitary cells, both D₁ and \bar{D}_5 receptors stimulate adenylyl cyclase and have identical affinities toward dopaminergic agonists and antagonists. In order to analyze specific signaling pathways mediated by activation of either D₁ or D₅ receptors, we have identified the G proteins that are coupled to these receptors. Through functional analyses and competition binding studies, and from immunoprecipitation techniques, using antisera against the various α subunits of G proteins, we have established that both D_1 and D_5 receptors couple to $G_s\alpha$. In addition, D_1 receptors are also coupled to $G_o\alpha$. Since $G_o\alpha$ has been implicated in the regulation of Ca^{2+} , K^+ , and $\tilde{N}a^+$ channels, this finding would suggest that D_1 receptors can mediate the functional activity of these ion channels. There is also evidence to indicate that D_5 receptors couple to $G_z\alpha$, a novel G protein abundantly expressed in neurons. Thus, despite similar pharmacological properties, such differential coupling of D₁ and D₅ receptors to G proteins other than G_sα, indicates that dopamine can transduce varied signaling responses upon the simultaneous stimulation of both these receptors.

Index Entries: Dopamine receptors; G proteins; signal transduction.

D₁ Family of Dopamine Receptors

Abnormal dopamine neurotransmission has been implicated in diverse neuropathological conditions, including schizophrenia, Parkinson's disease, hyperprolactemia, Tourette's syndrome, attention deficit disorder, and the reinforcing effects of drug and alcohol addic-

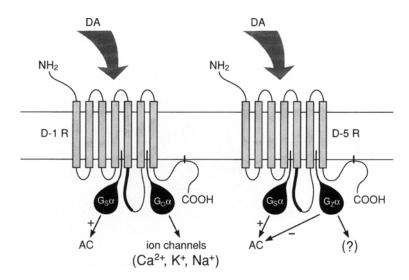


Fig. 1. Schematic representation of coupling of D_1 and D_5 receptors to different G proteins, through the third cytoplasmic loop of the receptors: The heavily drawn NH₂ terminus region of this loop, which shares 75% sequence homology, is depicted as the domain through which D_1 and D_5 sites interact with $G_5\alpha$. The coupling of the receptors to either $G_0\alpha$ or $G_z\alpha$, is shown to occur through the C-terminus portion of the third cytoplasmic loop. Abbreviations used are: AC, adenylyl cyclase; D-1 R, D_1 dopamine receptor; D-5 R, D_5 dopamine receptor; DA, dopamine.

tions. Dopamine exerts its effects in the central and peripheral nervous systems through at least seven genetically distinct receptor subtypes: D_1 , D_2 , D_3 , D_4 , D_5 , D_{1C} , and D_{1D} (Gingrich and Caron, 1993; O'Dowd, 1993; Sugamori et al., 1994; Demchyshyn et al., 1995). Each of these receptors is composed of seven α-helical transmembrane spanning regions linked by intracellular and extracellular loops of varying size (see Fig. 1). The dopamine-receptors transduce their signals by coupling to the heterotrimeric GTP binding proteins, termed G proteins, consisting of α , β and y subunits (for reviews, see Hepler and Gilman, 1992; Exton, 1994; Neer, 1994). D₂-like dopamine receptors, D_2 , D_3 and D_4 , have introns in their coding region and exist in various forms by alternate splicing in the region of the third cytoplasmic loop. D₂ and D₄ receptors inhibit adenylyl cyclase by coupling to the inhibitory G_i proteins (Gingrich and Caron, 1993; O'Dowd, 1993), whereas D₃ receptors only modulate cyclase function weakly.

Members of the D_1 family of receptors, D_1 , D_5 , D_{1C} , and D_{1D} , all stimulate adenylyl cyclase and are encoded by intronless genes, which show less diversity in their sequences than the D₂ receptor subtypes. D_{1C} and D_{1D} dopamine receptors are found in Xenopus laevis and avian systems, respectively, whereas the D_1 and D_5 dopamine receptors are predominantly found in mammalian species. In addition to their ability to stimulate cyclase, D₁ receptors have also been shown to mediate the functional activity of other signaling systems: stimulation of phospholipase C (Undie et al., 1994), inositol phosphate production and Ca²⁺ mobilization in Xenopus oocytes (Mahan et al., 1990), inhibition of Na⁺/K⁺-ATPase (Bertorello et al., 1990) and the Na⁺/H⁺ antiporter (Felder et al., 1990), activation of the arachidonic acid cascade system (Piomelli et al., 1991) and stimulation of K⁺ efflux (Laitinen, 1993).

Although D_1 and D_5 dopamine receptors appear to be virtually identical, the overall sequence homology between the two receptors

is only 50% (O'Dowd, 1993). D₅ receptors have been suggested to have higher affinity toward dopamine and lower affinity for the antagonist, (+)butaclamol, relative to D₁ (Grandy et al., 1991; Sunahara et al., 1991). However, we (Kimura et al., 1995a) and others (Hill et al., 1996) have not found any such pharmacological differences between D₁ and D₅ sites. More recently, we found that D₅ receptors cannot be covalently tagged by the D₁-selective photoaffinity ligand, [125I]MAB, even though they bind the photolabel with identical affinity and stereospecificity as D₁ receptors (Sidhu et al., 1998a). This indicates that there are differences in amino acid sequences between the D_1 and D₅ receptors in close proximity to the ligand binding region, consistent with the low sequence homology of these proteins.

Because of the identical affinities of D₁ and D₅ receptors toward agonists and antagonists, and the lack of suitable pharmacological drugs that discriminate between these receptors, it is presently not possible to assign with certainty specific functions to the individual receptors. This problem is further compounded by studies in transfected cells that may or may not express the appropriate effector systems, regulatory components, and cofactors that are present in the native cellular environment of these receptors. Finally, in primate brains, there is considerable coexpression of D₁ and D₅ receptors in various brain regions, such as striatum, cerebral cortex, hippocampus, and in the lateral and medial thalamus (Bergson et al, 1995a; Bergson et al, 1995b; Choi et al., 1995). D_1 and D_5 coexpression has also been observed in peripheral tissues, such as renal cortex (Nash et al., 1993). It is possible that by stimulating adenylyl cyclase and perhaps transducing other, different signaling systems, cells that coexpress both D_1 and D_5 sites, cause an augmentation of dopamine effects, because of a redundancy phenomenon, while simultaneously eliciting dissimilar and hitherto unknown functions.

Given these limitations, we decided to focus our efforts in analyzing receptor-G protein coupling, hypothesizing that the identification of G proteins that couple to these receptors may enable predictions and initiate searches of specific signal-transducing pathways mediated by D₁ and D₅ receptor. Moreover, such studies would also be helpful in understanding how dopamine, and indeed other neurotransmitters, selectively and simultaneously activate receptors displaying similar affinities toward the agonist, when coexpressed within the same neuron. For example, D_1 and D_2 receptors, which are present in postsynaptic striatal neurons, stimulate and inhibit, respectively, adenylyl cyclase, which could, but does not, result in an overall negation of the dopaminergic signal. Furthermore, given the similar affinities of D₁ and D₅ sites for dopamine, how is a specific signaling pathway preferentially activated by these receptors? The key to such questions may lie in the nature of the G proteins that are coupled to these receptors.

GTP-Binding Proteins

To date there are at least 21 distinct subtypes of the α , 4 of the β and 6 of the γ subunits. The α -subunit of G proteins, upon binding of GTP after activation by agonist-occupied receptor, mediates the activity of diverse signaling systems. For example, receptors stimulate adenylyl cyclase activity, resulting in synthesis of adenosine 3′,5′-monophosphate (cAMP), upon coupling of receptors to $G_s\alpha$, in response to agonists. In opposing pathways, receptors inhibit adenylyl cyclase by coupling to the inhibitory G proteins, such as $G_{i1}\alpha$, $G_{i2}\alpha$, or $G_{i3}\alpha$.

Although G protein-coupled receptors were initially believed to selectively activate a single effector, they are now known to have an intrinsic ability to generate multiple signals through interaction with different α subunits of G proteins (Birnbaumer et al., 1990; Milligan, 1993). Thus, the α_2 -adrenergic receptor is known to couple to all the pertussis toxin (PTX)-sensitive G proteins, G_i (G_{i1} , G_{i2} , G_{i3}) (Kurose et al., 1991) and $G_0\alpha$ (Okuma and Reisine, 1992). D_2 dopamine receptors can inhibit adenylyl cyclase by

coupling to $G_{i2}\alpha$ and $G_{i3}\alpha$, but not $G_{i1}\alpha$ (O'Hara et al., 1996). The SSTR2 subtype of somatostatin receptors couples to G_{i3}α and $G_0\alpha$ (Law et al., 1991), whereas endothelin B receptors couple to both $G_s\alpha$ and $G_a\alpha$ (Jouneaux et al., 1994; Allgeier et al., 1994). The coupling of human parathyroid hormone receptor to G_s and G_i has also been demonstrated (Schneider et al., 1994). The ability of G protein-coupled receptors to couple to diverse αsubunits of G proteins is believed to occur primarily through the third cytoplasmic loop of the receptor (Fig. 1), a region that typically exhibits the largest sequence diversity among G protein-coupled receptors. Indeed, this sequence diversity may be key to the ability of receptors to couple to different G proteins.

Coupling of D₁ Receptors to Different G Proteins

Through reconstitution studies, we initially demonstrated that D₁ dopamine receptors were also coupled to multiple G proteins (Sidhu et al., 1991). That D_1 receptors couple to $G_s\alpha$, is well established given its ability to stimulate adenylyl cyclase; $G_s\alpha$ remains the only $G\alpha$ protein known to stimulate cyclase. To test if D₁ receptors were also coupled to other G proteins, soluble rat striatal D₁ receptors were reconstituted into phospholipid vesicles with exogenous G proteins from HeLa cells (Sidhu et al., 1991), after inactivation of endogenously present G proteins with N-ethylmaleimide, NEM, in the presence of a D₁ agonist, to protect the receptor (Sidhu et al., 1986). Agonist-competition binding studies were then performed using the D₁-selective antagonist, [125I]SCH 23982 (Sidhu and Kebabian, 1985). The high affinity binding sites, which represents the activated, G protein-coupled state of the receptor, were measured.

Approximately 40–57% of the receptors were in the high-affinity state in the hybrid-reconstituted vesicles; these high-affinity sites were sensitive to modulation by Gpp(NH)p, the nonhydrolyzable analog of GTP, indicating

coupling to the exogenous HeLa G proteins. If the HeLa cells were first treated with PTX, which inactivates $G_i\alpha$ and $G_o\alpha$ by ADP-ribosylation, the high affinity D₁-binding sites in the hybrid system were diminished by 50%, indicating that at least half of these hybrid highaffinity sites were caused by coupling of the receptor to PTX-sensitive G proteins. When D₁ receptors were reconstituted with G protein extracts from cyc cells, which lack G_sα, only 25% of the D₁ receptors continued to display Gpp(NH)p-sensitive high-affinity sites. Treatment of cyc⁻ cells with PTX abolished all highaffinity sites, confirming coupling of the D₁ receptors to the PTX-sensitive G proteins, G_i/G_o (Sidhu et al., 1991). These studies with the HeLa hybrid system indicated that not only did D_1 receptors couple to G_i/G_o , but that such coupling occurred in the simultaneous presence of $G_s\alpha$.

Although we documented the ability of D₁ sites to couple to multiple G proteins in reconstituted lipid vesicles, it was unclear if such coupling also existed in membranes, where lateral mobility between receptors and G proteins are likely to be restricted, limiting such interactions. In rat pituitary GH₄C₁ cells transfected with D₁ cDNA, 60% of the total membrane-bound D₁ receptor sites were in the high affinity state (Kimura et al., 1995a). If the D₁-GH₄C₁ cells were treated with either PTX or cholera toxin (CTX, which ADP-ribosylates $G_s\alpha$), the percentage of D_1 sites in the membranes was reduced to 45%. This suggests that even in the membrane-bound state, D₁ sites are able to couple to both CTX- and PTX-sensitive G proteins.

D₁ receptor–G protein coupling was also analyzed in human SK-N-MC neuroblastoma cells, which endogenously express these receptors (Sidhu and Fishman, 1990; Sidhu, 1997), and the results compared to those seen with GH₄C₁ cells (Kimura et al, 1995a). Unlike our findings in GH₄C₁ cells, in the SK-N-MC cells PTX-sensitive coupling was not observed (Kimura et al, 1995b). Using Gα-specific antisera (Lounsbury et al., 1993), we found that of the PTX-sensitive G proteins expressed in

 GH_4C_1 cells, $G_{i2}\alpha$ and $G_o\alpha$ were not expressed in SK-N-MC cells, suggesting that the absence of PTX-sensitive D_1 coupling in SK-N-MC cells was caused by a lack of expression of these specific G proteins.

Using a novel immunoprecipitation approach employed previously for identifying G proteins coupled to α₂-adrenergic and somatostatin receptors (Okuma and Reisine, 1992; Law et al., 1991), we confirmed the identity of the PTX-sensitive G protein coupling to D₁ sites to be $G_0\alpha$ (Kimura et al., 1995b). In this procedure, sodium cholate-solubilized D₁-GH₄C₁ cell membranes were incubated with various anti-Gα antisera and the immune complex was precipitated by the addition of protein A Sepharose. Under these conditions, receptors coupled to G proteins remain associated with the α-subunit and are coimmunoprecipitated with the α-subunit. Through radioligand-binding studies with [125]SCH 23982, we tested for the presence of the D₁ receptor in the immunopellet, and documented a parallel loss of receptors from the soluble supernatant.

With anti- $G_0\alpha$ antiserum, 34% of the total soluble D_1 receptor binding activity was detected in immunopellets, indicating association between the receptor and $G_0\alpha$. Anti- $G_s\alpha$ antiserum coimmunoprecipitated 24% of the receptor-binding activity in the immunopellet. These coimmunoprecipitations of D_1 -binding activity in the immunopellets were accompanied by a parallel loss in D_1 binding in the supernatant. When antisera directed against the alpha-subunits of G_{i1} , G_{i2} , G_{i3} , or G_q were used, negligible D_1 binding was detected in the immunopellets (Kimura et al., 1995b).

That the D₁ dopamine receptor is able to couple to PTX-sensitive G proteins had been suggested earlier in rat renal tissues (Bertorello and Aperia, 1988). The inhibition of Na⁺/K⁺-ATPase activity seen in these studies required the simultaneous stimulation of both D₁ and D₂ dopamine receptors. Pretreatment of tissues with PTX abolished the D₁/D₂-mediated inhibition of Na⁺/K⁺-ATPase. However, these studies could not distinguish if the observed

PTX-sensitivity was because of a G protein that was coupled to D₂ or to D₁ receptors.

The coupling of D_1 sites to G_0 predicts that these receptors modulate ion channels, since $G_0\alpha$ is known to couple to signal transducing systems that mediate ion channel function, such as Ca²⁺, K⁺, and Na⁺ channels. Indeed, dopamine depresses and slows a voltagedependent Ca²⁺ current in embryonic chick sympathetic neuron, through a PTX-sensitive G protein (Hille, 1994). In Xenopus oocytes, D₁ receptors can induce Ca2+ mobilization in a cAMP-independent manner (Mahan et al., 1990). In the resting state of medium-spiny neurons, D₁ dopamine receptors inactivate a slow K⁺ current (Kitai and Surmeier, 1993). In all these studies, the $G\alpha$ mediating the dopamine response was not identified and it would appear that these effects probably occur through coupling of D_1 sites to $G_0\alpha$. Finally, coupling of D₁ receptors to PTX-sensitive G proteins causes suppression of adenylyl cyclase, in the absence of functional D₁ recep $tor/G_s\alpha$ coupling (Kimura et al., 1995b). The ability of D_1 receptors to couple to $G_0\alpha$ will now enable confirmation of the involvement of this G protein in the D₁-mediated regulation of these diverse ion channels.

Coupling of D₅ Dopamine Receptors to Different G Proteins

The ability of D_5 receptors to stimulate adenylyl cyclase, predicts that these receptors couple to $G_s\alpha$. However, D_5 receptors have also been shown to inhibit catecholamine secretion in bovine chromaffin cells (Dahmer and Senogles, 1996). Interestingly, in these cells, D_5 receptors were suggested not to be coupled to $G_s\alpha$, since only negligible dopamine-mediated activation of cyclase was observed. However, the D_5 -mediated inhibition of catecholamine secretion was shown to occur through a PTX-insensitive G protein.

In transfected GH₄C₁ cells, we had earlier demonstrated that 48% of the membrane-bound D₅ receptors were in the high-affinity

state and could couple to both $G_s\alpha$ and to a PTX-insensitive G protein (Kimura et al., 1995a). In PTX-treated cells, approx 50% of the total receptor population continued to exist in the high-affinity state. Interestingly, we found that at least half of the D₅ high-affinity binding sites were much more resistant to modulation by Gpp(NH)p, when compared to the D₁ highaffinity sites (Kimura et al., 1995a). Indeed, high (300 μ M) levels of Gpp(NH)p were necessary to abolish these sites, suggesting that this G protein had a slow rate of GTP/GDP exchange rate and/or a low intrinsic GTPase activity. However, in the presence of the G protein activator AlF₄ (20 µM AlCl₃ and 10 mM NaF), sensitivity to lower (100 μ M) levels of Gpp(NH)p was appropriately restored. This indicated that the PTX-insensitive G protein coupling to D_5 receptors was either $G_0\alpha$ or $G_z\alpha$, both of which are resistant to PTX and require AlF₄ for activation.

We have recently shown that D_5 dopamine receptors couple to $G_z\alpha$, in addition to $G_s\alpha$ (Sidhu et al., 1997b). From immunoprecipitation studies with antisera against various α -subunits of G proteins, we found that D_5 receptors were associated with $G_s\alpha$ and $G_z\alpha$. CTX treatment of transfected D_5 -GH₄C₁ cells reduced, but did not abolish, the membrane-bound high-affinity binding sites. Additionally, anti- $G_s\alpha$ antiserum caused the coimmunoprecipitation of 33% of the soluble receptors. These studies indicate that D_5 receptors couple to $G_s\alpha$, in line with adenylyl cyclase stimulatory capability of these receptors.

Anti- $G_z\alpha$ antiserum coimmunoprecipitated 24% of the high-affinity binding sites, which corresponds to the % R_h of D_5 sites that are resistant to CTX (25%) and NEM (35%). The concurrent loss of D_5 receptor activity from the supernatant fraction when using anti- $G_z\alpha$ antiserum also supports our finding of association between the D_5 receptor and $G_z\alpha$. Despite similar pharmacological properties, D_1 receptors were not found to be associated with $G_z\alpha$ and no binding activity was detected in immunopellets with soluble D-1- GH_4C_1 membranes and $G_z\alpha$ antiserum under identical experimen-

tal conditions used for the D-5 studies. These results validate the specificity of $G_z\alpha$ and D_5 receptor associations.

That the D_5 receptors were coupled to $G_z\alpha$ was further confirmed by novel Gpp(NH)p release studies using protein A-conjugated iummunopellets obtained with D₅-GH₄C₁ extracts and anti- $G_z\alpha$ antiserum (Sidhu et al., 1998b). These immunopellets were treated with a D_1/D_5 agonist and increasing concentrations of Gpp(NH)p (up to 300 μ M). Under these conditions, we predicted an uncoupling of the receptor from the protein A-conjugated G proteins, resulting in a Gpp(NH)p-dependent release of the D₅ receptors from the immunopellet. The released D₅ receptors were then detected by Western blots with anti-D₅receptor antiserum. In the presence of agonist, but in the absence of Gpp(NH)p, there was little or no D₅ immunoreactivity released from the immunopellet. However, with increasing concentrations of Gpp(NH)p, there was a concomitant increase in the amount of receptor released from the immunopellet, confirming the $D_5/G_z\alpha$ association.

In other studies where antisera against both $G_s\alpha$ and $G_z\alpha$ were simultaneously used together in immunoprecipitation, the D_5 binding activity obtained in the immunopellets (57%) was additive to binding obtained in immunopellets when using either $G_s\alpha$ antiserum or $G_z\alpha$ antiserum alone. This value is also in agreement with the total receptor population existing in the high-affinity state (54%), indicating that associations between the D_5 receptors and $G_s\alpha/G_z\alpha$ occurs specifically through the high-affinity site of the receptor.

None of the other anti-G α antisera tested, including anti-G $_{q}\alpha$ antiserum, were able to coimmunoprecipitate appreciable levels of the D $_{5}$ receptor in the immunopellets (Sidhu et al., 1998b). We further eliminated the possibility that D $_{5}$ sites couple to G $_{q}\alpha$ based on the inability of D $_{5}$ receptors to mediate phosphatidylinositol mobilization upon activation of the receptors with dopamine. Moreover, treatment of D $_{5}$ -GH $_{4}$ C $_{1}$ membranes with NEM did not abolish the high-affinity binding sites. Since

NEM is known to inactivate both $G_s\alpha$ (Sidhu et al., 1986) and $G_q\alpha$ (Smrcka et al., 1991), NEM-treatment should have resulted in complete loss of the high-affinity sites, if the receptors were coupled to $G_q\alpha$. That D_5 receptors are not coupled to $G_o\alpha$ or any of the other PTX-sensitive G proteins, suggests that these receptors modulate signaling pathways that are distinct from those transduced by D_1 .

Functional Relevance of $D_5/G_z\alpha$ Coupling

Since the precise function of $G_z\alpha$ has not been definitively established, the molecular implications and relevance of $D_5/G_z\alpha$ coupling is not known. $G_z\alpha$ has been shown to mediate inhibition of adenylyl cyclase activity in certain cells (Wong et al., 1992; Kozasa and Gilman, 1995). In human embryo kidney 293 cells, dopamine, acting through the D₂ dopaminergic receptor inhibits hCG-stimulated cAMP accumulation and this inhibition occurred through coupling of receptor to $G_z\alpha$ (Wong et al., 1992). In GH_4C_1 cells, we did not find any $G_z\alpha$ -mediated suppression of adenylyl cyclase in either CTX- or PTX-treated cells (Sidhu et al., 1997b) and it is not clear whether these cells express the necessary effector systems.

At least three types of adenylyl cyclases are present in GH_4C_1 cells: types II, IV, and VI, whereas type I adenylyl cyclase is not expressed (Paulssen et al., 1994); the expression of type V in these cells has not been reported to the best of our knowledge. Since $G_z\alpha$ inhibits type I and type V adenylyl cyclase activity (Kozasa and Gilman, 1995), the lack of expression of these cyclases in GH_4C_1 cells may account for the absence of cyclase inhibition mediated through $D_5/G_z\alpha$ coupling, even in CTX-treated cells.

Even though the signaling pathway(s) transduced through $D_5/G_z\alpha$ coupling is not clear, the functional relevance of such coupling becomes apparent upon examining brain regions that express this receptor. For instance, both type V adenylyl cyclase and D_1 dopamine

receptors are expressed at high levels in the striatum, which has a rich dopaminergic input (Glatt and Snyder, 1993) and these receptors are known to stimulate the activity of this cyclase subtype (Yoshimura et al., 1996). By contrast, the hippocampus is rich in D₅, but not D₁, receptors, although type I adenylyl cyclase is abundantly expressed (Cooper et al., 1995). Therefore, in the striatum, which expresses lower levels of D₅ sites relative to D₁, activation of D₁ receptors by dopamine would lead to net activation, rather than inhibition, of adenylyl cyclase. In the hippocampus, however, the opposite may be true, where $D_5/G_z\alpha$ coupling is likely to predominate. Therefore, colocalization of D₅, $G_z\alpha$ and specific cyclase subtypes are likely to be of physiological relevance in striatum and hippocampus.

Mechanism Through Which D₁ and D₅ Dopamine Receptors Can Simultaneously Couple to Multiple G Proteins

Although there is ample data indicating the ability of not only dopamine, but also other receptors, to couple simultaneously to diverse G proteins, the mechanism through which such coupling occurs is not known. However, a close examination of the structure of G proteincoupled receptors may provide certain clues (Fig. 1). These receptors interact with G proteins through the third intracellular loop of the receptor. The carboxyl terminus of the receptor is also thought to be important in such interactions, probably by facilitating the underlying process. Although the sizes of the third intracellular cytoplasmic loop is similar in D₁ and D₅ receptors, the sequence homology in this region is only 50%. Since both D₁ and D₅ receptors couple to G_s\alpha, such coupling must occur through a common site(s) localized on the third cytoplasmic loop. Sequence analysis of the third cytoplasmic loop of D₁ and D₅ receptors shows that the first 28 amino acids of the NH₂ terminus in this loop shares 75% se-

quence homology. We propose that the coupling of D_1 and D_5 sites to $G_s\alpha$ probably occurs through this stretch of amino acids of the NH_2 terminus. Indeed, an 11-amino acid β_1 adrenergic receptor substitution at the NH_2 terminus of the third intracellular loop of a chimeric M_1 muscarinic acetylcholine/ β adrenergic receptor is sufficient to allow the chimera to couple to $G_s\alpha$ (Wong et al., 1990).

The coupling of D_1 and D_5 receptors to diverse G proteins must then occur through the remaining amino acids of the third cytoplasmic loop that are nonhomologous, sharing only 42% sequence homology. Thus, alternative coupling of these receptors to different G proteins probably occurs through amino acids of this region, permitting the receptor to simultaneously couple to different G proteins, activating distinct signaling pathways within the cell, in response to stimulation by dopamine. A schematic drawing of this model is presented in Fig. 1. This model could also be applicable to other dopamine receptor subtypes coexpressed within the same neuronal cell. For example, dopamine could simultaneously stimulate both the D₁ and D₂ dopamine receptors, whose effects would be manifested through differential G protein coupling, such that the net result would not be a negation of the dopamine action (simultaneous stimulation and inhibition of adenylyl cyclase by D₁ and D₂ sites, respectively), but rather an augmentation of the net result.

There is also other indirect evidence supporting this model. For instance, all the D₂ and D₄ dopamine receptors exist as multiple isoforms because of splicing of the third cytoplasmic loop of the receptor gene (O'Dowd, 1993; Gingrich and Caron, 1993). Such splicing presents these receptor isoforms with multiple choices in receptor G protein coupling, while providing the necessary selectivity for the coupling.

Conclusions

Although this review is focused on the D_1 and D_5 dopamine-receptor subtypes, the model

proposed is applicable for understanding the mechanisms of action of other G protein-coupled receptor systems, which have virtually identical affinities for their own agonists and are coexpressed in the same cell. It is apparent that the diversity of G protein-coupled receptor subtypes, along with the heterotrimeric nature of the G proteins themselves, provides a complex signaling network within the neuronal cell. Several aspects of receptor-G protein coupling need to be resolved. These include deducing consensus sequences on the receptor for each Gα subtype. It is also important to determine if other regions of the receptor, such as the carboxyl terminus, facilitate or actively participate in G protein coupling. Additionally, what is the mechanism by which a receptor can selectively discriminate between closely related subtypes of G proteins? For example, why does the D_2 dopamine receptor couple to the α -subunits of G_{i2} and G_{i3} , but not G_{i1} (O'Hara et al., 1996)? It is likely that the specificity of such coupling is dictated by the receptor itself. As additional details become available in the future, the precise mechanism of receptor-G protein coupling will undoubtedly become known, providing a fascinating view of how signals are transduced, fine-tuned, and regulated within cells.

Acknowledgments

This work was supported in part by United States Public Health Services Grant NS-29685 and NS-34914 from the National Institutes of Health, and by a grant from the American Heart Association.

References

Allgeier A., Offermanns S., Van Sande J., Spicher K., Schultz G. and Dumont J. E. (1994) The human thyrotropin receptor activates G proteins G_s and $G_{q/11}$. *J. Biol. Chem.* **269**, 13,733–13,735.

Bergson C., Mrzljak L., Smiley J. F., Pappy M., Levenson R., and Goldman-Rakic P. S. (1995a) Regional, cellular and subcellular variations in

- the distribution of D1 and D5 dopamine receptors in primate brain. *J. Neurosci.* **15,** 7821–7836.
- Bergson C., Mrzljak L., Lidow M. S., Goldman-Rakic P. S., and Levenson R. (1995b) Characterization of subtype-specific antibodies to the human D5 dopamine receptor: studies in primate brain and transfected mammalian cells. *Proc. Natl. Acad. Sci. USA* **92**, 3468–3472.
- Bertorello A. and Aperia A. (1988) Pertussis toxin modulates dopamine inhibition of Na,K-ATPase activity in rat proximal convoluted tubule segments. *Prog. Clin. Biol. Res.* **268B**, 353–356.
- Bertorello A., Hopfield J., Aperia A. and Greengard P. (1990) Inhibition by dopamine of Na+-K+-ATPase activity in neostriatal neurons through D1 and D2 receptor synergism. *Nature (Lond.)* **347**, 386–388.
- Birnbaumer L., Abramowitz J., and Brown A. M. (1990) Receptor-effector coupling by G proteins. *Biochim. Biophys. Acta.* **1031**, 163–224.
- Choi W. S., Machida C. A., and Ronnekleiv O. K. (1995) Distribution of D1, D2 and D5 receptor mRNA in the monkey brain: ribonulease protection assay analysis. *Brain Res. Mol. Brain Res.* **31**, 86–94.
- Cooper D. M. F., Mons N. and Karpen J. W. (1995) Adenylyl cyclases and the interaction between calcium and cAMP signalling. *Nature* **374**, 421–424.
- Dahmer M. K. and Senogles S. E. (1996) Dopaminergic inhibition of catecholamine secretion from chromaffin cells: evidence that inhibition is mediated by D4 and D5 dopamine receptors. *J. Neu*rochem. **66**, 222-232.
- Demchyshyn L. L., Sugamori K. S., Lee F. J. S., Hamadanizadeh S. A., and Niznik H. B. (1995) The dopamine D1D receptor: cloning and characteristics of three pharmacologically distinct D-1-like receptors from *Gallus domesticus*. *J. Biol. Chem.* **270**, 4005–4012.
- Exton J. H. (1994) Phosphoinositide phospholipases and G proteins in hormone action. *Ann. Rev. Physiol.* **56**, 349–369.
- Felder C. C., Campbell T., Albrecht F., and Jose P. A. (1990) Dopamine inhibits Na+-H+ exchanger activity in renal BBMV by stimulation of adenylate cyclase. *Am. J. Physiol.* **259**, F297–F303.
- Gingrich J. A. and Caron M. G. (1993) Recent advances in the molecular biology of dopamine receptors. *Annu. Rev. Neurosci.* **16**, 299–321.
- Glatt C. E. and Snyder S. H. (1993) Cloning and expression of an adenylyl cyclase localized to the corpus striatum. *Nature* **361**, 536–538.

- Grandy D. K., Zhang Y., Bouvier C., Zhou Q-Y., Johnson R. A., Allen L., Buck K., Bunzow J. R., Salon J. and Civelli O. (1991) Multiple human D5 dopamine receptor genes: a functional receptor and two pseudogenes. *Proc. Natl. Acad. Sci. USA* 88, 9175–9179.
- Hepler J. R. and Gilman A. G. (1992) G proteins. *Trends Biochem. Sci.* **17**, 383–387.
- Hill P., Lai Y., Hnilo J., Lin C. -C., Karla M., Bounds S., Herz J., and Mitchell R. (1996) Cloning, expression and comparison of the binding characteristics of the known human dopamine receptors. *Adv. Neurol.* **69**, 41–52.
- Hille B. (1994) Modulation of ion-channel function by G-protein-coupled receptors. *Trends Neurosci.* **17**, 531–536.
- Jouneaux C., Mallat A., Serradeil-Le Gal C., Goldsmith P., Hanoune J., and Lotersztain S. (1994) Coupling of entothelian B receptors to calcium pump and phospholipase C via G_s and G_z in rat liver. *J. Biol. Chem.* **269**, 1845–1851.
- Kimura K., Sela S., Bouvier C., Grandy D. K., and Sidhu A. (1995a) Differences in the binding properties of D-1 and D-5 dopamine receptors expressed in GH4C1 rat somatomammotrophic cells. *J. Neurochem.* **64**, 2118–2124.
- Kimura K., White B. H., and Sidhu, A. (1995b) Coupling of human D-1 dopamine receptors to different guanine nucleotide binding proteins: Evidence that D-1 dopamine receptors can couple to both G_s and G_o. *J. Biol. Chem.* **270**, 14,672–14,678.
- Kitai S. T. and Surmeier D. J. (1993) Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons. *Adv. Neurol.* **60**, 40–52.
- Kozasa T. and Gilman A. G. (1995) Purification of recombinant G proteins from Sf9 cells by hexahistidine tagging of associated subunits: characterization of a12 and inhibition of adenylyl cyclase by G_zα. *J. Biol. Chem.* **270**, 1734–1741.
- Kurose H., Regan J. W., Caron M. G., and Lefkowitz R. L. (1991) Functional interactions of recombinant α₂ adrenergic receptor subtypes and G proteins in reconstituted phospholipid vesicles. *Biochemistry* **30**, 3335–3341.
- Laitinen J. T. (1993) Dopamine stimulates K⁺ efflux in the chick retina via D1 receptors independently of adenylyl cyclase activation. *J. Neurochem.* **61**, 1461–1469.
- Law S. F., Manning D. R., and Reisine T. (1991) Identification of the subunits of GTP-binding proteins coupled to somatostatin receptors. *J. Biol. Chem.* **266**, 17,885–17,897.

Lounsbury K. M., Schlegel B., Poncz P., Brass L. F., and Manning D. R. (1993) Analysis of G_zα by site-directed mutagenesis: Sites and specificity of protein kinase C-dependent phosphorylation. *J. Biol. Chem.* **268**, 3494–3498.

- Mahan L. C., Burch R. M., Monsma F. J., and Sibley D. R. (1990) Expression of striatal D1 dopamine receptors coupled to inositol phosphate production and Ca²⁺ mobilization in *Xenopus oocytes*. *Proc. Natl. Acad. Sci. USA* **87**, 2196–2200.
- Milligan G. (1993) Mechanisms of multifunctional signalling by G protein-linked receptors. *Trends Pharmacol. Sci.* **14**, 239–244.
- Nash S. R., Godinot N., and Caron M. G. (1993) Cloning and characterization of the opossum kidney cell D1 dopamine receptor: expression of identical D1A and D1B dopamine receptor mRNAs in opossum kidney and brain. *Mol. Pharmacol.* 44, 918–925.
- Neer E. J. (1994) G proteins: critical control points for transmembrane signals. *Protein Sci.* **3**, 3–14.
- O'Dowd B. F. (1993) Structures of dopamine receptors. *J. Neurochem.* **60**, 804–816.
- O'Hara C. M., Tang L., Taussig R., Todd R. D., and O'Malley K. L. (1996) Dopamine D_{2L} receptor couples to $G\alpha_{i2}$ and $G\alpha_{i3}$ but not $G\alpha_{i1}$, leading to the inhibition of adenylate cyclase in transfected cell lines. *J. Pharmacol. Expt. Ther.* **278**, 354–360.
- Okuma Y. and Reisine T. (1992) Immunoprecipitation of α_{2a}-adrenergic receptor-GTP-binding complexes using GTP-binding protein selective antisera. *J. Biol. Chem.* **267**, 14,826–14,831.
- Paulssen R. H., Johansen P. W., Gordeladze J. O., Nymoen O., Paulssen E. J., and Gautvik K. M. (1994) Cell-specific expression and function of adenylyl cyclases in rat pituitary tumor cell lines. *Eur. J. Pharmacol.* 222, 97–103.
- Piomelli D., Pilon C., Giros B., Sokoloff P., Martes M.-P., and Schwartz, J.-C. (1991) Dopamine activation of the arachidonic acid cascade as a basis for D1\D2 receptor synergism. *Nature* **353**, 164–167.
- Schneider H., Feyen J. H., and Suewen K. (1994) A C-terminally truncated human parathyroid hormone receptor is functional and activites multiple G proteins. *FEBS Lett.* **351**, 281–285.
- Sidhu A. (1997) Regulation and expression of D-1, but not D-5, dopamine receptors in human SK-N-MC neuroblastoma cells. *J. Recep. Res/ Sig. Trans.* 17, 777–784.
- Sidhu A. and Fishman P. H. (1990) Identification and characterization of functional D1 dopamine receptors in a human neuroblastoma cell line. *Biochem. Biophys. Res. Commun.* **166**, 574–579.

Sidhu A. and Kebabian J. W. (1985) An iodinated ligand identifying the D-1 dopamine receptor. *Eur. J. Pharmacol.* **113**, 437–440.

- Sidhu A., Kassis S., Kebabian J., and Fishman P. H. (1986) Sulphydryl group(s) in the ligand binding sites of the D-1 dopamine receptor: specific protection by agonist and antagonist. *Biochemistry* **25**, 6695–6701.
- Sidhu A., Banta M., Uh M., and Shin Y. -M. (1998a) Comparative analyses of photoaffinity labeling of D-1 and D-5 dopamine receptors. *Neuroscience* **82**, 1095–1101.
- Sidhu A., Kimura K., White B. H., Uh M., and Patel S. (1998b) Multiple coupling of human D-5 dopamine receptors to guanine nucleotide binding proteins, G_s and G_z. *J. Neurochem*. (in press).
- Sidhu A., Sullivan M., Kohout T., Balen P., and Fishman, P. (1991) D1 dopamine receptors can interact with both stimulatory and inhibitory guanine nucleotide binding proteins. J. Neurochem. 57, 1445–1451.
- Smrcka A. V., Hepler J. R., Brown K. O., and Sternweis P. C. (1991) Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. *Science* **251**, 804–807.
- Sugamori K. S., Demchyshyn L. L., Chung M., and Niznik H. B. (1994) D_{1A}, D_{1B} and D_{1C} dopamine receptors from *Xenopus laevis*. *Proc. Natl. Acad. Sci. USA* **91**, 10,536-10,540.
- Sunahara R. K., Guan H. -C., O'Dowd B. F., Seeman. P., Laurier L. G., Ng G., George S. R., Torchia J., Van Tol H. H. M., and Niznik H. B. (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. *Nature* 350, 614–619.
- Undie A. S., Weinstock J., Sarua H. M., and Friedman E. (1994) Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. *J. Neurochem.* **62**, 2045–2048.
- Wong S. K.-F., Parker E. M., and Ross E. M. (1990) Chimeric cholinergic: β-adrenergic receptors that activate Gs in response to muscarinic agonists. *J. Biol. Chem.* **265**, 6219–6224.
- Wong Y. H., Conklin B. R., and Bourne H. R. (1992) G_z-mediated hormonal inhibition of cyclic AMP accumulation. *Science* **255**, 339–342.
- Yoshimura M., Ikeda H., and Tabakoff B. (1996) Opioid receptors inhibit dopamine-stimulated activity of type V adenylyl cyclase and enhance dopamine-stimulated activity of type VII adenylyl cyclase. *Mol. Pharmacol.* **50**, 43–51.